CS143
Summer 2012

Written Set 2 Solutions

Handout 175
July 23, 2012

Problem 1: LL(1)

(i) The FIRST sets are as follows:

FIRST(C) = {public, final, class}
FIRST(P) = {€, public}

FIRST(F) = {€, £inal}

FIRST(X) = {€, extends}

{
FIRST(Y) = {€, implements}
FIRST(I) = {1dentifier}
FIRST()) =1{g, “, "}

(i) The FOLLOW sets are as follows:

FOLLOW(C) = {$}

FOLLOW(P) = {final, class}
FOLLOW(F) = {class}
FOLLOW(X) = {implements, $}
FOLLOW(Y) = {$}
FOLLOW(I) = {$}

FOLLOW(]) = {$}

(iii) The LL(1) parse table for the grammar is given below:

public | final class extends | implements | identifier , S
C 1 1 1
P 2 3 3
F 4 5
X 6 7 7
Y 8 9
I 10
] 11 12

Problem 2: LL(1) Conflicts

i. This grammar is not LL(1). Identify the conflicts in the grammar that make it not
LL(1) and explain each.

The three productions for S all conflict with one another, because they all start (directly
or indirectly) with the terminal symbol noun. This gives a three-way FIRST /FIRST
conflict. The two productions for M also give a FIRST/FIRST conflict, because the
grammar is left-recursive.

ii. Rewrite the grammar so that it is LL(1). To prove that your grammar is LL(1),
construct an LL(1) parsing table for it. You do not need to explicitly show the
FIRST or FOLLOW sets, thought it might be useful to compute them.

One way that we might rewrite the grammar is as follows:

S - noun Z
Z — €l and noun | , noun, M
M — and noun | noun, M
noun , and $
S noun Z
Z , noun, M| and noun €
M noun, M and noun

Problem 3: LL(1) and LR(0)

i. Give an example of a grammar that is LL(1) but not LR(0), and explain why.
One simple observation is that LR(0) grammars cannot contain €-productions, because
they will force a shift/reduce conflict to occur. However, LL(1) grammars can handle

this.

Consider the grammar A — € | x. This is clearly LL(1) because it has this parsing table:

However, it is not LR(0). After augmenting the grammar to getS > Aand A - € | x,
we get these configurating sets:

S->-A S->A- A- x-
A--
A-- x

Here, there is a shift/reduce conflict in the first state — do we shift x or reduce A — €?
ii. Give an example of a grammar that is LR(0) but not LL(1), and explain why.
LL(1) cannot handle most left-factorable grammars. The grammar A = ab | ac is not

LL(1), because we have a FIRST /FIRST conflict between the two productions.
However, the grammar is LR(0), with these configurating sets:

S->-A S—>A- A—-a-b A—-ab- A - ac-

A - -ab A—a-c

A - -ac

Problem 4: SLR(1) Parsing

(i) The LR(0) configurating sets for this grammar are as follows.

1) 2) (©) (4) (5) (6)
S—--P S—-P- P - (-P)P P - (P)P P - (P)-P P - (P)P-
P - -(P)P P - -(P)P P - (P)P

P-- P-- P--

(ii) The FOLLOW sets for the nonterminals are

FOLLOW(S) = {$)
FOLLOW(P) = {), $}

(iii) The SLR(1) parsing table is as follows:

() $ P
(1) s3 r3 r3 s2
(2) accept
3) s3 r3 r3 s4
4) sb
5) s3 r3 r3 s6
(6) r2 r2

An important detail to note is that in state 1, even though there is no legal string that
could end in), we still must put a reduce action in on seeing a close parenthesis
because that terminal is in FOLLOW(P). For this reason, SLR(1) parsers sometimes
apply spurious reductions when encountering invalid input. There is a similar table
entry for $ in state 3.

(iv) The entry for (in state one would be a shift/reduce conflict in an LR(0) parser.
Because of the item P = -(P)P, we would try to shift into state 3, and because of the item
P - -, we would try to reduce production 3.

(v) No entry would contain a reduce/reduce conflict in the LR(0) parse table, since each
LR(0) configurating set contains at most one reduce item.

Problem 5: Manual Conflict Resolution

(i) In state (3), we are trying to reduce a concatenation, which is left-associative. We
should therefore reduce anything that could start an “or” (since concatenation have
higher precedence) or anything else that would be a concatenation (since concatenation
is left-associative). However, we should shift the * symbol because star has higher
precedence than concatenation. In state (7), we are trying to reduce an “or,” which is
left-associative. Since “or” has lowest precedence, this means we should always shift
when possible, unless we find another vertical bar signaling the start of another “or”
(because “or” is left-associative).

The resulting table is shown here:

a £ () I * $ R
(1) s10 s9 s4 s2
(2) s10 s9 s4 s6 s8 acc s3
3) r2 r2 r2 r2 r2 s8 r2 s3
4) s10 s9 s4 sb
(5) s10 s9 s4 s11 s6 s8 s3
(6) s10 s9 s4 s7
(7) s10 s9 s4 r3 r3 s8 r3 s3
(8) r4 r4 r4 r4 r4 r4 r4
9) r5 r5 r5 r5 r5 r5 r5
(10) r6 r6 r6 r6 r6 r6 r6
(11) r7 r7 r7 r7 r7 r7 r7

(ii) No, upgrading this parser to LR(1) will not fix this problem. LR(1) only works on
unambiguous grammars, but this grammar is ambiguous. For example, we can derive
aaa in two ways:

Problem 6: LALR(1)-by-SLR(1)

(i) The FOLLOW set for Y contains a because of the production Y - bYa. Consequently,
in state (3) we have a shift/reduce conflict, because on seeing an a we can't tell whether
to shift it (from X = a-a) or to reduce it (because of Y = a-).

(ii) We augment the grammar by looking at every production of the form A — -w for
some string w and replacing the nonterminals in it by the appropriately augmented
nonterminals. Here, this gives us

S1 = Xz
Xi2=Yi5b
Xio = aa
Y5 = bYrsa
Y1_5 —>a

Y79 = bY79a
Y7_9 —>a

(iii) The FOLLOW sets for these nonterminals are

FOLLOW(S,) = {$)

FOLLOW(Xl-z) = {$}
FOLLOW(Y1.5) = {b}
FOLLOW(Y.) = {a}

(iv) The updated lookahead sets are

LA(2,5->X) ={$)

LA, Y = a:) = {b}

LA(4, X 2 aa’) = {$}
LA(6, X = Yb-) = {$}
LA, Y = a') ={a}
LA(10,Y =» bYa‘) = {a, b}

(v) The only way this grammar could not be LALR(1) is if we have a shift/reduce
conflict in state 3, since it's the only state containing a reduce item and any other item.
However, the lookahead here for Y — a- is b, which does not overlap with the shift item
a as before. The grammar is thus LALR(1).

(vi) Since the grammar is LALR(1), it is also LR(1).

